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PREFACE

Bounded nominal paths can be constructed in the vicinity of the

interior equilibrium point (sometimes called a libration or Lagrange

point) for the Sun-Earth+Moon Elliptic Restricted Three-Body Problem.

The nominal paths may be computed using an analytic approximation or,

more accurately, using a numerical integration routine. Numerical

integration is used to generate the periodic or quasi-periodic

reference trajectories in this effort. The output of the routine will

be numerical values for each of the six states (three position and

three velocity) at each of the integration time steps. Linearization

of both the equations of motion and of the equations representing the

tracking solution assumes access to a continuous representation of the

spacecraft's orbit. Follow-on research that investigates tracking

errors or station-keeping costs may also need a continuous (and smooth)

representation of the six states or, at least, may need access to an

interpolation routine. Consequently, this work explores the generation

of curves through the numerical data representing the libration point

orbits in the Sun-Earth+Moon ER3BP; these orbits are computed in the

vicinity of the interior libration point between the Sun and the

Earth/Moon barycenter. This effort is supported by the Frank J. Seiler

Research Laboratory and has been conducted as doctoral research under

the direction of Professor K.C. Howell, School of Aeronautics and

Astronautics, Purdue University, West Lafayette, Indiana.
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INTRODUCTION

With the expansion of space exploration programs worldwide,

interest has increased in the design of innovative, complex, and yet

low-cost spacecraft trajectories that meet demanding mission

requirements. In most of the missions flown in the last few decades,

the spacecraft spent the majority of the flight time in a force

environment dominated by a single gravitational field. For the

preliminary mission analysis in these cases, additional attracting

bodies and other forces could be modeled, when required, as perturbing

influences. Analysis of some recently proposed and more adventurous

missions, such as those involving libration point orbits, will require

dynamic models of higher complexity, since at least two gravitational

fields are of nearly equal influence on the spacecraft throughout the

majority of the mission. Thus, trajectories determined for a system

consisting of numerous gravitational forces have been of particular

theoretical and practical interest in recent years.

One type of many-body problem, motion within a three-body system

of forces, has a wide range of applications. The general problem of

three bodies assumes that each body has finite mass and that the motion

is a result of mutual gravitational attraction. When the mass of one

of the three bodies is assumed to be sufficiently small (infinitesimal)

so that it does not affect the motion of the other two bodies

(primaries) in the system, the "restricted three-body problem" results.

The primaries can be further assumed to be moving in known elliptic or

circular orbits about their common center of mass. Therefore, the

elliptic restricted three-body problem, where the primaries are assumed

to be in known elliptic orbits, may be considered a reasonably

approximate model for a spacecraft moving within the gravitational

fields of the Sun and the Earth, for instance.



In the formulation of the restricted three-body problem, one mass

is defined as infinitesimal relative to the remaining two masses

(primaries). The primaries, unaffected by the infinitesimal mass, move

under their mutual gravitational attractions. In the elliptic

restricted three-body problem (ER3BP), the primaries are assumed to

move on elliptic paths. If the eccentricity of the primaries' orbit is

assumed to be zero, the circular restricted three-body problem (CR3BP)

results. Even for known primary motion, however, a general,

closed-form solution for motion of the third body of infinitesimal mass

does not exist. In the restricted three-body problem (ER3BP or CR3BP),

five equilibrium (libration) solutions can be found. These equilibrium

points, sometimes also called Lagrange points, are particular solutions

of the equations of motion governing the path of the infinitesimal mass

moving within the gravitational fields of the primaries.

The equilibrium points are defined relative to a coordinate system

rotating with the primaries. At these locations, the forces on the

spacecraft are in equilibrium. These forces include the gravitational

forces from the massive bodies and the centrifugal force associated

with the rotation of the system. (The addition of solar radiation

pressure to the force model changes the locations of the five Lagrange

points, although they can still be defined, and these solar radiation

effects are discussed in Gordon i1 1 .) The libration points are located

in the plane of primary rotation. Three of the libration points are on

the line between the two massive bodies, and one of these collinear

points is interior to the primaries. The last two points are at the

vertices of two equilateral triangles in the plane of primary rotation.

The triangles have a common base that is the line between the primary

masses.

For the CR3BP, the five libration points are stationary relative

to the rotating reference frame. If the problem is generalized to the

ER3BP, the libration points pulsate as the distance between the

primaries varies with time. In both the circular and elliptic

restricted problems, two-dimensional and three-dimensional

trajectories, both periodic and quasi-periodic paths, can be computed

in the vicinity of these libration points.
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Three-dimensional, periodic "halo" orbits in the vicinity of the

collinear libration points have been studied since the late 1960s.

Early work concerning these orbits was motivated by studies related to

exploring the far side of the Moon. These studies were completed in

support of the planned Apollo 18 lunar exploration mission that was

later canceled. Robert Farquhar coined the term "halo" to describe a

three-dimensional, periodic orbit near a libration point on the far

side of the Moon in the Earth-Moon system.(2  These orbits were

designed to be large enough so that the spacecraft would be constantly

in view of the Earth and would thus appear as a halo around the Moon.

A communications station in this type of orbit could maintain constant

contact between the Earth and a lunar experimentation station on the

far side of the Moon. 
[31

Quasi-periodic orbits near libration points are also currently of

great research interest. The variations in size and shape that a

quasi-periodic orbit can exhibit may add valuable flexibility for

mission planning. This type of bounded, three-dimensional libration

point trajectory is called a Lissajous orbit since specific planar

projections of these quasi-periodic trajectories may look like a

special type of "Lissajous" curve. Physicist Jules Antoine Lissajous

(1822-1880) investigated curves that were generated by compounding

simple harmonic motions at right angles, and he delivered a paper )n

this subject to the Paris Academy of Sciences in 1857. Nathaniel

Bowditch of Salem, Massachusetts, had conducted some similar work in

1815. Lissajous curves have a wide variety of shapes that depend on

the frequency, phase, and amplitude of the orthogonal components of the

motion.[4,S]  When the in-plane and the (orthogonal) out-of-plane

frequencies of the linearized motion are nearly (but not) equal, the

resulting path is typically called a Lissajous trajectory.

A method to generate approximations for this type of

quasi-periodic orbital path was developed analytically by Farquhar and

Kamel in 1973. [6) They derived a third-order approximate analytic

solution for a translunar libration point orbit in the Earth-Moon ER3BP

that also included solar gravity perturbations. In 1975, Richardson

and Cary then developed a fourth-order analytic Lissajous approximation

in the Sun-Earth+Moon barycenter system. [7 The notation "Earth+Moon"

3



indicates that the Earth and the Moon are treated as one body with mass

center at tha Earth-Moon .arycenter. In consideration of the lunar

perturbation, Farquhar has shown that the accuracy of solutions in the

Sun-Earth CR3BP can be enhanced if the collinear libration points are

defined along the line between the Sun and the center of mass of the

Earth and the Moon. (81 Since 1975, a few researchers have considered

methods to numerically generate Lissajous trajectories, but the lack of

periodicity of a Lissajous path complicates numerical construction of

bounded trajectories. Howell and Pernicka have developed a numerical

technique for determination of three-dimensional, bounded Lissajous

traj-rtories of arbitrary size and duration. 
[9-141

The numerical integration routine computes bounded periodic or

quasi-periodic libration point orbits. The numerical ouput (three

position and three velocity states) is indexed by integration time

steps; follow-on research may require a continuous representation

of the orbit instead of a tabular listing of the numerical data. The

first chapter briefly covers the background of the p-oblem. The

following chapter then discusses the four methods of curve fitting

investigated and the method selected to be used in follow-on research.

4



CHAPTER 1: BACKGROUND

In this chapter, the elliptic restricted three-body problem and

the associated coordinate systems are reviewed; the equations of motion

for an infinitesimal mass moving in the gravity fields of two massive

bodies are then presented. Next, locations of the libration points are

discussed. Finally, the state transition matrix and the construction

of bounded nominal orbits near the collinear Lagrange points are

summarized. A more thorough discussion of these topics is presented in

Gordon. M

A. Elliptic Restricted Three-Body Problem

The elliptic restricted three-body problem is a simplification of

the general problem of three bodies. In the general three-body

problem, each of the three bodies is assumed to be a particle of finite

mass and, thus, exerts an influence on the motion of each of the other

bodies. Neither the general nor the restricted problem of three bodies

has a genernl closed-form solution. However, when problem

simplifications are made, particular solutions can be determined. If

the mass of one of the bodies is restricted to be infinitesimal, such

that it does not affect the motion of the other two massive bodies

(primaries), the restricted three-body model results. The primaries

are assumed to be in known elliptic (ER3BP) or circular (CR3BP) orbits

about their common mass center (barycenter). The problem can then be

completely described by a single second-order vector differential

equation with variables appropriately defined for a specified

coordinate frame.

5



B. Coordinate Systems

The two standard coordinate systems used in the analysis of this

problem have a common origin at the center of mass (barycenter) of the

primaries. Primaries with masses m and m2 such that m 1 m 2 are

assumed here, although this distinction is arbitrary. The

infinitesimal mass is denoted as m . These masses (m1 ,m2,m3)

correspond to particles situated at points P1  P2, and P3

respectively. The barycenter is denoted as "B," and the resulting

arrangement is shown in Figure 1-1. The rotating coordinate system is

defined as x yRz , and the inertial system is identified as xIylzI.

Note that both coordinate systems are right-handed, and the x and y

axes for both systems are in the plane of motion of the primaries. The

x axis is, of course, assumed to be oriented in some fixed direction;

in this specific formulation of the problem, it is assumed to be

parallel to a vector defined with a base point at the Sun and directed

toward periapsis of the Earth's orbit. The rotating x axis is definedR

along the line that joins the primaries and is directed from the larger

toward the smaller primary. The z axes are coincident and are directed

parallel to the primary system angular momentum vector. The yR axis

completes the right-handed xRyRzR system.

C. Equations of Motion

Newtonian mechanics are used to formulate the equations of motion

for m3 (the spacecraft) relative to B as observed in the inertial

reference frame. The sum of the forces on m 3 resulting from both the

gravity fields of masses m (the Sun) and m2  (the Earth-Moon

barycenter) and from the solar radiation pressure can be used to

produce the following second-order vector differential equation:

Sm mkS
p - G ( ) d - G 2 + (1-1)3d

d 3  r 3d 3

6
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Figure 1-1. Coordinate Systems With Barycenter Origin.

7



The overbar denotes a vector, and primes indicate differentiation

with respect to dimensional time. All quantities are dimensional, as

appropriate, and the quantity "G" is the universal gravitiational

constant. The scalars "d" and "r" ir equation (1-1) denote the

magnitudes of the vectors d and F, respectively, as depicted in

Figure i-I. The dimensionless scalar "k" is the solar reflectivity

constant, and "S" is the solar radiation pressure constant. The

formulation of the solar radiation force model and the values for the

solar radiation constants are derived from previous work by Bell.

The numerical values for these constants are selected from

characteristic data for a spacecraft previously in a libration point

orbit:

2
AS r

S 0 0 o (1-2)cm
3

where k = 1.2561, S = 1352.098 kg/sec 3 , r = 1.4959787x10a km, c = the0 0

speed of light = 2.998xli m/sec, A = surface area of the spacecraft's

sun-facing side = 3.55 m2 , and m = mass of the spacecraft = 435 kg.3

The constant S is the solar light flux measured at one astronomical
0

unit (A.U.), and r is the nominal distance associated with the

measurement of the solar flux S . [15] The value of A, also termed the0
effective cross-sectional area of the spacecraft, is considered to be

constant in this work. The constant k is a material parameter

dependent on the absorptivity of the spacecraft surface and is

generally confined to a range of 0 : k : 2.0.11

The position vector p is written in rotating components as

xR +yR +Z (1-3)
^R R

where xR ,y R,ZR are unit vectors. The velocity and the acceleration of

the spacecraft (particle P3 with mass m3 ) relative to the barycenter B

as observed in the inertial reference frame can then be derived. The

following kinematic expression for p" can be derived:

8



= (x,-"y-2'y'-'x)H +(Yy+y"x+2'x'-O' R zR. (1-4)

Notice that equation (1-4) includes terms with the angular

velocity, 0'(t), and angular acceleration, e"(t), of the rotating

reference frame with respect to the inertial frame. By using known

elliptic orbital elements, readily computed expressions for 0' and 0"

can be found:

/a(1-e)(1+e) /G(m +m2)

01= (1-5)
a2 (1 - e cos(E))

2

-2G(m I+m )W '-e)(1+e) e sin(E)
= 4 (1-6)

a (1 - e cos(E))4

where e is the eccentricity, E is the eccentric anomaly, and a is

the semi-major axis of the primary orbit.

Three scalar equations of motion for P can be derived using the3

dimensional equations (1-1), (1-2), (1-4), (1-5), and (1-6); however,

for convenience, the following scaling factors are typically

introduced:

(1) The sum of the masses of the primaries equals one
mass unit. (m + m = 1 unit of mass)

(2) The mean distance between the primaries equals one
unit of distance. (a = 1 unit of distance)

(3) The universal gravitational constant is equal to one
unit by proper choice of characteristic time.
(characteristic time = 1/n ; thus G = 1 unit)

mean

The dimensional equations of motion can be simplified and scaled

by introducing the characteristic quantities defined above and by

9



introducing the nondimensional mass ratio W, "psuedo-potential" U, and

the scaled solar radiation constant s:

mm 2  (1-7)
m+m

1 2

and

U - 1d +  + _ -1 62 (x 2  + y 2 ) k s(1 )

d r 2 d

where the dot denotes the derivative with respect to characteristic

time. The scaled solar radiation constant, s, is derived from the

dimensional radiation constant denoted as S in equation (1-2) and, by

using the characteristic quantities described above, its value is

calculated as s = 6.206597029461384x10-6 nondimensional units, Then,

the vector magnitudes, "d" and "r," are written in terms of scaled

quantities as:

d = [(x + R) 2 + y2 + z 2] 11/ 2 , (1-9)

r = [(x - R + p R) 2 + y2 + Z2 1/2. (1-10)

The three scalar second-order differential equations that result

can be written in terms of characteristic quantities as

10



x-2 y "-2 .+ O y = u+ Oy, (1-11)
xx

+2 x --u xu -Ox, (1-12.)
ay y

aU
19z z

The scaled equations for the angular velocity and angular

acceleration of the rotating frame relative to the inertial frame also

simplify:

1(l-e) (l+e)0 = (1-14)

(1 - e cos(E))
2

-2v/(1-e)(l+e) e sinCE)

(1 - e cos(E))
4

If the primaries are assumed to be moving in a circular orbit,

then 0 = 0, R = 0 = 1, and equations (1-11), (1-12), (1-13) reduce to

three scalar equations in the simplified form:

11



2 y = U Uax x (1-16)

+2 au -U, (1-17)
ay y

au _a - U. (1-18)az z

The scalar equations (1-11), (1-12), and (1-13) corresponding to

the elliptic restricted problem or equations (1-16), (1-17), and (1-18)

derived for the circular restricted problem can be used to locate the

five libration points in the rotating reference frame.

D. Locations of the Lagrangian (Libration) Points

By using scalar equations (1-16), (1-17), and (1-18) for motion in

the CR3BP, the locations of the stationary equilibrium points can be

determined. Equations (1-11), (1-12), and (1-13) can be used to

determine ratios of distances that are constant in the ER3BP; these

ratios are related to the locations of libration points that have been

defined in the ER3BP and that "pulsate" with respect to the rotating

reference frame as the distance between the primaries varies with time.

1. The CR3BP

In the CR3BP, the five libration points are equilibrium points and

are stationary w!th respcct to the rotatIng coordinate framc, that is,

they are locations at which the foices on the third body sum to zero.

The arrangement of points and the corresponding nondimensional

distances are depicted in Figure 1-2. Note that three of the libration

12
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x=L 1

x L3 -
x = L

Figure 1-2. Lagrange Point Locations in the Scaled CR3BP.
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points (L , L2, L 3) are collinear with the primaries; one collinear

point (L1) is interior to the primaries. The remaining two points (L4

and L ) are located at the vertices of two equilateral triangles that

are in the plane of primary rotation and that have a common base

between the primaries.

In the CR3BP, the libration points are stationary in the rotating

coordinate frame. Stationary points are defined as points at which the

relative velocity and acceleration are zero, such that

Y,= 7, xy 0. (1-19)

By using equations (1-19) in equations (1-16) through (1-18), the

useful conditions U = U = U = 0 are found. The three collinear
x y z

libration points can be readily located by further notin3 that y = z =

0 for the points located on the rotating x axis.

2. The ER3BP

Five libration points also exist in the ER3BP, but they are not

stationary relative to the rotating frame; rather, the collinear points

pulsate along the x axis, and the triangular points pulsate relative

to both the x and the yR axes as the distance between the primaries

varies with time. The equilibrium solutions can be located by using

equations (1-11) through (1-13) to find ratios of certain distances

that are, In fact, constant in the problem. The collinear libration

points in the ER3BP can be found by assuming x * 0, x * 0, and y = y

z = z = y = z = 0. The relative locations of the libration points in

the ER3BP are depicted in Figure 1-3.

14
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Figure 1-3. Lagrange Point Locations in the Scaled ER3BP.
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E. State Transition Matrix

The state transition matrix is used in the calculation of the

acceptable nominal trajectory, and it must also be available at varying

time intervals along the nominal path for orbit determination error

analysis investigations and station-keeping studies. The transition

matrix is derived in connection with a linearizing analysis.

The equations of motion for the infinitesimal mass in the ER3BP

can be linearized about a reference trajectory (nominal path) that is a

solution of the differential equations. The states, three position and

three velocity, and the state vector 7 are defined as

x , = x, x= y, x3 = z , x4 = x, x5 = y, x6 = z, (1-20)

and

= [xI, x2 , x3, x4, x5 , x ] T . (1-21)

The reference trajectory is defined as x REF Therefore, using a

Taylor's series approach, the expansion about the reference path is

written in the form of the first-order variational equation

d._() = = AL) (1-22)
dt

where x = x - x is understood to be the vector of residuals relative
REF

to the nominal solution, and the matrix At) contains the first-order

terms in the Taylor's series expansion of the equations of motion about

the nominal or reference solution of Interest.

16



Using equations (1-11) through (1-13), A(t) can be expressed as

A(t) = (1-23)

where all four submatrices are dimension 3x3 and

'Uxx Uxy Uxz]

Urr = Uyx Uyy Uyz (1-24)

LUzx Uzy Uzz]

with

S2= [-0 0

0 00

In equation (1-24), the notation is simplified for the partial

derivatives; for instance

a2U
= Uxx.

ax2

The matrix A(t) can then be evaluated along the reference trajectory.

The vector differential equation (1-22) governing the state

variations from the nominal path has a solution of the form
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x(t) = 0(t,t 0 ) X(t ) (1-25)

where 0(t,t ) is the state transition matrix at time "t" relative to

time "t ." The matrix 0, then, represents the sensitivities of the0

states at time "t" to small changes In the Initial conditions. It is

determined by numerically Integrating the matrix differential equation

-(todr  = (t,t o ) = AMt 0(t,t o , (1-26)

with initial conditions (t 0t o) = I, the 6x6 identity matrix. Thus,

the nonlinear equations of motion In (1-11) through (1-13) and the

matrix equation (1-26) combine to result in 42 first-order differential

equations that can be simultaneously Integrated numerically to

determine the state vector and Its associated transition matrix at any

instant of time. The reference trajectories that are of interest in

this research are generated by a numerical Integration method that uses

a differential corrections process developed by Howell and

Pernicka. L 14 1 The orbits Include solar radiation pressure forces as

formulated by Bell (15 specifically for an orbit associated with the

interior Lagrange point In the Sun-Earth system. The numerical

integration routines used in this work are fourth- and fifth-order

Runge-Kutta formulas available in the 386-Matlab software package. [16]

F. Bounded Orbits Near Libration Points

The computation of bounded periodic and quasi-periodic orbits in

the vicinity of libration points has been of increasing Interest during

the past 100 years. This section first discusses the stability of the

libration points I.. the CR3BP and the ER3BP. The construction of

bounded orbits near the collinear Lagrange points is then summarized.

Finally, the specific reference trajectories used in the orbit

determination error analysis and station-keeping studies in this work

are introduced.
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1. Stability of the Libration Points in the CR3BP

The accomplishments of those researchers who have constructed

bounded orbits near collinear libration points are particularly

significant because the collinear points are considered "unstable"

points of equilibrium but with (only) one mode producing positive

exponential growth. Bounded motion in their vicinity, therefore, is

determined by deliberately not exciting the unstable mode. A second

mode produces negative exponential orbital decay and is also

deliberately not excited. In the CR3BP, the remaining four eigenvalues

are purely imaginary. The existence of initial conditions that result

in only trigonometric (sinusoidal) functions as solutions means that

the collinear libration points, while unstable, possess conditional

stability (with proper choice of initial conditions) in the linear
117]sense.

The triangular libration points are marginally stable in the

linear sense for a specific range of primary mass ratio in the CR3BP.

Purely imaginary roots in two conjugate pairs are obtained for ;15.0385,

which is given here to four decimal places and is sometimes referred to

as Routh's value. 18 1 The mass ratios (listed here to three decimal

places), for example, in the three-body systems of the Earth-Moon

(A = 1.216 x 10-6), Sun-Earth+Moon (p = 3.022 x 10-6) and Sun-Jupiter

(i = 9.485 x 10-4) all satisfy the mass ratio requirement for marginal

stability of the triangular points in the linearized model. Natural

satellites, such as the Trojan asteroids or a moon of Saturn, occupy

linearly stable orbits near triangular libration points in their

respective systems.

2. Stability of the Libration Points in the ER3BP

Several researchers have analyzed ihe stability of the libration

points in the elliptic problem, where both the mass ratio, p, vnd the

primary orbit eccentricity, e, influence stability.117-21) The
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instability of the collinear libration points as determined in the

circular problem for all the values of mass parameter persists for the

elliptic problem; an analysis of the collinear points shows instability

for any combination of the values of both p and e.

The results of a linearized stability analysis regarding the

effects of eccentricity and mass ratio on the linear stability of the

triangular points have been published by Danby [20 and then later by
[21]

Bennett . Both Danby and Bennett have numerically generated graphic

depictions of the ?inear stability region in the p-e plane. For the

eccentricity in the Sun-Earth+Moon ER3BP, the value of 1L which ensures

linear stability is only slightly less than Routh's value (decreased by

approximately one percent). An interesting aspect of the p-e stability

region is that a range of values of p greater than Routh's value also

defines a region of linear stability for a specific range of values of

e less than .3143.

3. Construction of Bounded Collinear Libration Point Orbits

The initial goal in the process of generating bounded orbits near

a collinear (unstable) libration point is to avoid exciting the

unstable mode associated with the linearized motion. The meteoric dust

particles that may be orbiting near Lagrange point L in the Sun-Earth2

system could only linger near that point if they arrive with the

"correct" initial position and velocity states relative to L . The2
"correct" initial conditions will only (primarily) excite the stable

modes associated with the linearized motion and nIot (or minimally)

excite the unstabie mode. The degree to which the unstable mode is

excited will determine the length of time that the dust particles

linger near L .2

The third-order analytic representation is used in this work to

provide the initial model for the trajectories. The method of

successive approximations, using the linearized solution as the first

appioximation to the nonlinear orbital path, and the method of dual

time scales are used to derive the third-order result.16 ,7 ,221  The

method of successive approximations is used to generate an asymptotic
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series in an appropriately small parameter. (The square root of the

eccentricity of the primary orbit, that is the orbit of the Earth-Moon

barycenter about the Sun, Is the small parameter used here.) The

method of dual time scales is used to convert the system of ordinary

differential equations into a system of partial differential equations.

In general, the method of multiple scales allows the various nonlinear

resonance phenomena to be included in the approximate analytic solution

and provides a method to remove secular terms. (Here, "secular" refers

to terms that include the time variable and is derived from the French

"sicle" meaning century.)

The analytic solution of Richardson and Cary [7  for the

Sun-Earth+Moon ER3BP has been derived to fourth order, but the third-

order approximation is found to be sufficient for this research. [9-141

A numerical integration algorithm, using a differential corrections

procedure that is designed to adjust the first guess as obtained from

the analytic approximation, can then be used to numerically generate

the orbit of interest. A method developed by Howell and Pernicka
[9-141

is used here to generate the orbital paths. Their method initially

employs the approximate analytic solution to compute target points, A

two-)evel (position matching then velocity matching), multi-step

differential corrections algorithm is used to construct a numerically

integrated, bounded trajectory that is continuous in position and

velocity. A solar radiation pressure model developed by Bell [11] is

also incorporated in the numerical integration procedure.

The method of Howell and Pernicka, including solar radiation

pressure, uses an initial analytic guess that represents a halo orbit

or, alternatively, a considerably smaller Lissajous path. The

higher-order terms tend to slightly alter the first-order periodic or

quasi-periodic pat'. Consequently, the initial target path for a halo

orbit will generally not be precisely periodic. The two-level,

multi-step differential corrections procedure then adjusts the initial

analytic target orbit and, therefore, will compute a halo-type orbit

that is nearly (but not exactly) periodic.
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4. The Reference Paths Generated for This Work

Precisely periodic halo orbits exist In the CR3BP. They also

exist in the ER3BP, but, in the ER3BP, they are multiple revolution

trajectories with periods much longer than those of interest here.

Nearly periodic orbits are more practical in the ER3BP and are much

more likely to be used In mission planning; therefore, the goal here

should be slightly modified to be the comparison of Lissajous and

"halo-type" orbits. The general shapes of the three-dimensional

halo-type and Lissajous orbits can be seen by plotting three

orthographic views of each orbit, using the tabular data from the

numerical integration routine. Figure 1-4 depicts three orthographic

views of point plots for the Lissajous orbit used in this research.

Figure 1-5 contains three orthographic views (on a slightly different

scale) of the considerably larger halo-type orbit. (Note that, in

general, the amplitude ratio for Lissajous trajectories is arbitrary.

In halo orbits, however, constraining the amplitude ratio results in

equalized frequencies for In-plane and out-of-plane motion.) The

orbits are depicted In the rotating reference frame centered at L .1

Both orbits are clearly not periodic; a Lissajous orbit is often

called a quasi-periodic path, and these two orbits could clearly be

termed quasi-periodic or Lissajous paths. The major difference between

the orbits is the larger size of the halo-type orbit; however, other

differences are also present. The maximum x and y excursions of the

halo-type orbit are approximately four times as large as those of the

Lissajous path. Furthermore, the direction of motion (clockwise versus

counterclockwise), as viewed in the y-z orthographic depiction, is

different for the two orbits used here. The direction of motion on the

halo-type orbit is counterclockwise in the y-z depiction; the direction

of motion is clockwise in the y-z depiction for the Lissajous path.

(Both orbits include clockwise motion in the x-y depiction.)

The two orbits can also be differentiated in terms of the

direction of the maximum z excursion in the x-z depiction. If the

maximum z excursion is in the positive z direction, the orbit can be

termed a member of a "northern family" of orbits. When the maximum z

excursion of the orbit is In the negative z direction, the orbit is
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termed a member of a "southern family" of orbits. In the x-z

orthographic depiction, the smaller (Lissajous) path can be seen to be

a member of a northern family of orbits, while the halo-type orbit is a

member of a southern family of orbits.

Future work with these two orbits will include studies that

generally require access to a nominal path that is at least piecewise

smooth. Some method of curve fitting the numerically integrated data

must consequently be investigated, and the evaluation of various

methods can add valuable problem insight.
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CHAPTER 2: CURVE FITTING THE NOMINAL PATH

The reference solution used in this research is generated by

numerical integration of the nonlinear equations of motion. In one

study, an investigation that used a consistent dynamic model for all

comparisons, Richardson (81 has shown that a slight reduction in fuel

expenditure can be realized if a numerically integrated, rather than an

approximate analytic, nominal path is computed. The numerical

integration method developed by Howell and Pernicka 9-14 ] is used here

to generate a set of reference points for both position (three states)

and velocity (three states), relative to the libration point of

interest, at specified times. Time series point plots of all six state

variables for approximately a 2-year segment of a Lissajous orbit are

depicted in Figures 2-1 (position states) and 2-2 (velocity states).

The method computes numerical data for the six states in a reference

frame that is centered at the libration point (in this case L ) and

that rotates with the primaries. However, state estimation techniques

and station-keeping algorithms considered in follow-on research require

access to a continuous nominal path, rather than point plots, of

acceptable accuracy.

The reference trajectory, represented as a (piecewise) smooth

curve, could be constructed, approximately or exactly, through the

points obtained from the numerical integration routine. The work here

assumes that a curve that passes through the numerical data (exactly)

is preferred. The effort required to generate a numerical solution,

including forces modeled consistent with the ER3BP (or even more

accurately modeled with ephemeris data) would seem to be wasted if the

reference curve deviates too far from the numerical data. However, a

method that approximates a smooth curve through the points is also

desirable; that is, linear interpolation between the numerical data
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points was not considered acceptable. In one study, Pernicka 112 1 found

that station-keeping costs for a libration point orbit were, in fact,

sensitive to the accuracy of the curve fit. Clearly, a piecewise

linear curve fit could not accurately match the concavity of the actual

orbital path between data points, regardless of the size of the time

steps used in the numerical integration routine.

Four methods of generating a curve for the nominal trajectory have

been evaluated: Fourier series, least squares, weighted least squares,

and cubic splines. The states associated with a quasi-periodic path

were thought to be the most difficult to curve fit; therefore, various

Lissajous trajectories were used to evaluate the curve-fitting methods.

One of these methods is then selected to be used for the reference

trajectory in follow-on state estimation and station-keeping research

A. Integrated Fourier Series

Joseph Fourier (1768-1830) solved heat flow problems using the

method of separation of variables, and this application led to the

development of the Fourier series. [3  Leonhard Euler and Alexis-Claud,

Clairaut (1713-1765) had already expanded some functions in such series

representations and had obtained the general integral equations for the

coefficients. Much earlier, the Babylonians had actually used a

rudimentary form of a Fourier series for estimation problems. (36)

However, Fourier made the crucial observation that every function could

be so represented even if the function was not periodic or not even

continuous. [231  Richardson used numerically integrated Fourier

series to represent the three position coordinates corresponding to a

halo orbit (near L in the Sun-Earth system). Richardson's work, andI

the periodic or quasi-periodic nature of the orbits that require a

curve fit, made th, initial investigation of Fourier series

representations seem natural.

The three position and three velocity variables can be expressed

parametrically as

x = x(t), y = y(t), z = z(t), x = x , = y(t), z = (t), (2-1)
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and the plotted time history of the numerical value of each variable,

as seen in Figures 2-1 and 2-2, reveals approximately sinusoidal

behavior. (The dot denotes the derivative with respect to time.) The

six states can be expressed in separate Fourier series, or the

expressions for the three velocity states can be computed from the

first time derivatives of the series expressions for the position

variables. Richardson [8 22 1 used the latter method to find series

representations for the velocity components corresponding to a

libration point halo orbit. Similar techniques have also been used for

a Lissajous path.

Studies by Howell and Pernicka have used numerically integrated

Fourier coefficients for parameterized series expressions for the

x=x(t), y=y(t), and z=z(t) coordinates of position in a Lissajous

orbit. [13,14] The series coefficients are integrated concurrently with

the equations of motion.

For example, the coefficients for the x position series

representation would be computed using

na
x(t) 2 + [a, cos- ) + b sin(-), (2-2)

2 L L
1=1

where

2L

a, j x(t) cos--5 -) dt, i = 0, 1, 2, .. , n (2-3)
L 

L

0

and

2L

b, = - x(t) sin( - ) dt, i = 0, 1, 2, ... , n. (2-4)
L L

0

The variable "L" is selected such that 2L is the duration of the orbit.

(The duration of the orbit is sometimes referred to in this work as the
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"fundamental period.") The variable "n" determines the number of terms

retained in the series; for instance, when n = 16 and when a is0

assumed to be zero, the resulting series representation for x(t) will

have 2n = 32 terms. Note that there must also be series

representations for y(t) and z(t). (There may also be series

representations for velocities x(t), y(t), and z(t), or time

derivatives of the Fourier series representations of the position

states may be used, depending on the method selected.) The Fourier

series coefficient equations are numerically inteL-ated along with the

equations of motion (1-11) through (1-13). When only the position

states are considered, this numerical integration then includes 102

first-order, coupled differential equations for computation of the

series, using 32-terms for each of the position states.

A comparison of the numerical output with the 32-term Fourier

series representations for the spatial coordiiates shows variation up

to several thousand kilometers. Consistent with Richardson, the series

representations for the velocity states were initially computed by

taking the first time derivatives of the Fourier series for the

position coordinates. This method leads to a nominal path that is

different in position and velocity from the results seen in the

numerical output. Differences up to several thousand kilometers in

each of the position states were considered unacceptable and provoked
[14]

further investigation into curve-fitting techniques. As one

alternative, the number of terms in each series could be increased and

the coefficients for the nominal velocity states could be numerically

integrated to improve accuracy, but this technique would add to an

already high computational burden. Also, by selecting 2L to be the

full duration of the orbit, the half-period will be so large that the

first several coefficients of each series will not significantly

contribute to the series solution. Some of these terms could,

consequently, be neglected; however, another method, such as least

squares, might provide closer agreement with the numerical output and

could lesson the computational requirements.
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B. Least Squares Curve Fits

The least squares approach constructs the "best" curve through a

set of points in the sense of minimizing the sum of the squared errors

in the locations of the points relative to the curve. This powerful

method has had many contributors, a few of which are mentioned here.

The Babylonians set the stage for the development of the method of

least squares by using a rudimentary form of the Fourier series for

estimation problems; then in 1632, Galileo Galilel first attempted to

minimize various functions of estimation errors. 241 In 1795, Carl

Friedrich Gauss invented and used the method of least squares when he

was just 18 years old. [231 Adrien-Marle Legendre independently

invented and first published his least squares development in 1806. (23

The least squares approach was also developed independently in America

by R. Adrain in 1808. [241 Gauss employed his least squares techniques

in an orbit measurement problem and developed data processing methods

for dealing with random variables. 253  In order to help astronomers

locate the asteroid Ceres, Gauss invented a recursive (sequential)

least squares procedure to handle the vast calculations that were
(243

necessary. New data could then be added sequentially rather than

the problem being recalculated with the complete batch of data when one

new observation arrived.

The task of finding representations for the numerical output can

be viewed as the problem of fitting six "best" curves through the six

given sets of points: (t,x(t)), (t,y(t)), (t,z(t)), (t,x(t)),

(t,y(t)), and (t,z(t)). (The dot denotes the first derivative with

respect to characteristic time.) The method of least squares can be

used for this purpose. Initially, the basis functions that are used to

construct the best curve through the data points must be selected.

This choice of basis functions is usually made by using some

hypothesized relationship for the variables as functions of time or

through an analysis of a plot of the points. A set of observations of

x(t) Pt distinct times tI, t2 ...... t is assumed. Suppose that x(t)

can best be represented by a linear combination of n basis functions.

These basis functions could be
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1, t, t2. tn

or

1, cos(t), sin(t), cos(2t), sin(2t). .......

Choosing basis functions that are orthogonal can lessen the

possible numerical difficulties encountered later due to dependencies;

however, in many cases, this is not necessary. One orthogonal choice

could be Legendre polynomial (Po .. . ..I Pn ) where the polynomial basis

(1, t, t2. .. . ..
, tn) is orthogonalized using Gram-Schmidt methods to

give P = 1, P = t, P = t2 _ 1/3, .... Another basis choice might

be the orthogonal Chebyshev polynomials where a cosine series such as

(1, cos(e), cos(2e) = 2cos2 () -1, cos(3e) = 4 cos3 (0) - 3 cos (0), ..)

is converted using a substitution "t = cos(o)" to give T = 1, T = t,o1

T2 = 2 t
2 -1, T3 = 4 t3 - 3 t, ..... A third choice of ort ogonal

basis functions could be the sinusoids 1, cos(t), sin(t), cos(2t),

sin(2t),....

In general, the method can be illustrated by assuming a set of n

basis functions denoted by 1, V (t), V 2(t), V3(t) ....... V n_(t).

Then an expression for x(t) can be computed using the basis functions

V t) and the scalar coefficients--as yet, unknown--denoted as bI for

i = 1, 2, 3 ..... n-1:

x(t) = b + b V t) + ...... + b V (t) - error.0 1 1 n-i n-1

The term "error" is included because the approximation is not, at the

outset, assumed to be exact. With m observations and with the error

denoted by "e", we can write m separate equations:
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bo + bIV(t) +. ....... + bnIVnl(t) - e, = x(t) = x

b + bI V (t 2 ) +....... + bnI V n_ (t 2 ) - e2 = x(t) = x2

b0 + b V (t 3 ) +....... + bnI V nl(t ) - e3 = x(t) x3 (2-5)

0 11 3bnIn- 3 1 3 m

b° + bIV(tM ) +. ..... + . - e( =x(t )= xM

This system (2-5) of m equations in n unknowns can be represented in a

matrix equation as

A =x (2-6)

where

1V(t I) V(t I)....... V_(t )

I1( 1 2 1 n-i I

1V(t 2) V(t 2)....... V l(t2)
1 2 2 2 n-I 2

A = V I (t ) V 2(t 3 ...... V n tI  t 3  (2-7)

Iv Ct ) v (t )......V v t)
I m 2 m n-I m
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In general, least squares problems are overdetermined (with m > n); an

exact solution to the overdetermined system A U = 7 is possible only if

the error vector, ;, is the zero vector (all m equations hold exactly).

Generally, an exact solution is not possible. There are many methods

that can be used to solve an equation such as (2-6); Skelton [26 1

discusses several of the methods.

The least squares method minimizes the sum of the squared error

terms. Since any particular error term could be positive or negative,

the sum of the errors could be very small while individual errors were

still quite large. Consequently, the sum of the squared errors is the

cost function that is minimized. We minimize P where

=E 2= -T-

e e . (2-11)

i=1

The overbar denotes a vector, and the "T" indicates a transpose. Using

equation (2-6) in equation (2-11), the cost function simplifies to

P TATA 1 - 2 TA + xX. (2-12)

Minimizing equation (2-12) with respect to results by taking the

derivative of the scalar P with respect to the vector b;:

-P = ATA + (bTATA)T - 2 (XTA)T = 0. (2-13)
6b

-T-

Note that the term x x In equation (2-12) is assumed to be a constant

and does not appear in the derivative (2-13). Simple matrix algebra

then leads to the solution

T -I T-
b = (ATA) ATx. (2-14)
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where b is used to denote the least squares estimate of the "best"

vector of basis coefficients.

Equation (2-14) is a depiction of the solution; however, there are

numerous solution methods that are more numerically stable than

inversion of such a large system as A TA in (2-14). For instance, when

the columns of A are not independent (as can occur when the basis

functions are not orthogonal), ATA will not be invertible, and the

psuedoinverse of ATA can be used to complete the least squares

approach. 27 ]  Even when A TA is invertible, the notation (A TA) -  is

included only to depict a solution for the unknown coefficients.

Generally, a more computationally efficient and numerically stable

method than matrix inversion is used. A method such as QR

factorization using Gram-Schmidt methods or the use of a set of

Householder transformations is more efficient than inverting A TA.[27 1

In order to briefly illustrate the QR decomposition method, the matrix

ATA is written as

A TA = QR

where Q is an orthogonal matrix such that Q = Q and and R is

triangular and easily inverted. The least squares solution derived

from equation (2-13) is

ATA U = AT7

Using the QR decomposition, this equation can then be written as

(QR) = A x.
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The solution

-1 -T T-
b = R Q Ax

involves inversion of only a diagonal matrix R.

For this work, sinusoidal basis functions were the logical choice

for the states (see Figures 2-i and 2-2). Using the x coordinate as an

example, one row in the least squares formulation for the time step m

can be written as

a+aCos +bsin +... +a cos (-)+bsin (=-)=x (2-15)

where "L" is the half-period selected for the computation. The number

of basis functions (2n+1) can be chosen to produce the most accurate

representation, as well as limiting the computational burden. if 101

basis functions we-e desired, the "last" basis function would be

s n( L m,, and its (yet to be determined) coefficient would be bso

The rows representing all integration time steps can be combined in

matrix form to produce the matrix equation

A b = 7 (2-16)

where A is a matrix with m rows, one for each of the m time steps, and

with n columns corresponding to the number of trigonometric basis

functions selected. The vector U contains the coefficients for the

basis functions. The column vector x has m entries for the x

coordinate, one for each of the m time steps. (Note that if curve fits

for all six states were necessary, then this method would be applied

six times with the right hand side of equation (2-16) being 7 then y

and so forth. The coefficients in b determined for each state variable

would consequently be different.)

The least squares approach solves for the "best" estimate, b, of

the vector U by minimizing the sum of the squared errors. [28] The
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estimate b is calculated such that x = Ab differs from x by some error

vector e, where

e = x - (2-17)

and the least squares estimate that results is

b = (ATA) -A'. (2-18)

The scalar entries in the vector b are then the Fourier coefficients

for the basis functions selected for use in the formulation. 27 1 This

approach to calculating the coefficients of the sinusoidal basis

functions has the advantages of computational efficiency and great

flexibility in the choices of fundamental period, 2L, and the number of

basis functions, 2n+l, retained in the series. 2 9 1 By choosing basis

functions that are orthogonal, possible numerical difficulties due to

dependencies can be eliminated, and the independent contribution of

each basis function can be judged by the relative size of its

coefficient.

Two criteria are used here to compare the various options for the

fundamental period and the number of basis functions. The value of the

sum of the squared errors ( Te) can be calculated in order to compare

various choices of n and L. The element of the error vector ' with the

largest magnitude provides an indicator of the maximum error for a

specific choice of n and L, and it is denoted as e . The scalars
max

e can also be used as a criteria for evaluating various combinations
max

of n and L. The error vector is calculated by noting that

T T3 _ -IT T -IT_

e x- A - A(A A)-ATx - x [A(A A)-A T
- I] X (2-19)

The identity matrix is denoted as I. The value e is then defined as
'fax

the entry in the vector e that has the largest absolute value. In one
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evaluation of this method, a Lissajous orbit of approximately 5 years

duration was used.

The quasi-periodic nature of the Li."sajous orbit allowed some

flexibility in the choice of "period" for modeling. In one trial, a

half-period of L = 87.5 days was roughly estimated from an analysis of

the plot of x(t) versus time. Other values of L close to 87.5 days

were also used in separate simulations, and the criteria involving
_T_

determination of e e and e were evaluated. A half-period equal to

the duration of the orbit (L = 1741.5 days) was also used and was

expected to minimize the error vector magnitude for "large" values of
[29]

n. Over numerous trials, the best curve fit was obtained for the

combination L = 1741.5 days and n = 101. The results of several

simulations are presented in Table 2-1.

TABLE 2-1: COMPARISON OF LEAST SQUARES CURVE FITS

n L = 87.5 Days L = 1741.56386 days

e (km) eTe (km ) e (km) eTe(km )
max max

101 6.4866 X 1O3  4.9455 X 109 2.7262 X 102 1.5307 X 107

81 6.4805 X 103 4.9455 X 109 2.7095 X 102 1.7092 X 107

61 6.4753 X 103 4.9456 X 109 1.3447 X 103 6.6568 X 107

41 6.4820 X 103 4.9457 X 109 3.0322 X 103 1.6871 X 109

31 6.4750 X 103 4.9457 X 109 6.8196 X 103 3.8327 X 109

21 6.4930 X 103 4.9459 X 109 6.9039 X 103 1.0044 X 1012

11 6.5635 X 103 4.9495 X 109 6.3270 X 104 1.2776 X 1012

3 7.5111 X 103 5.4017 X 109 5.9419 X 104 1.3569 X 1012

Clearly, using 101 basis functions for x(t), y(t), z(t), x(t),

y(t), and z(t) could be computationally expensive. Implementing this

method with n = 101 still resulted in maximum errors (e ) in the
max

range of hundreds of kilometers In the x estimate. Errors of such a
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magnitude provided improved accuracy over a 32-term secies with

numerically integrated Fourier coefficients, yet it was desired to

further reduce the errors and the computational burden, If possible.

Therefore, the third curve-fitting method attempted was weighted least

squares.

C. Weighted Least Squares

The method of weighted least squares allows the introduction of

weighting factors for the errors. The "most important" errors are

weighted more heavily (relativ,= to the other errors), and the weighted

sum of the squared errors is minimized. Ga',ss developed and first used

weighted least squares.127'30 1 He selected a weighting scheme for the

errors that allowed his weighted least squares procedure to provide a

linear, unbiased, minimum variance estimate, and these properties will

be used in the derivation of a state estimation algorithm described

later.

Regardless of how it is determined, the weighting matrix, W, is

multiplied by the error vector, e, and the quantity [We]T[We] is

minimized. [281 This minimization leads to the estimate

A TWT -TWT-
c = (A W wA)- A wwx. (2-20)

Several weighting schemes were considered. Comparison of the least

squares curve fits with the numerical output revealed that the poorest

agreement of the curve with the numerical data occurred in the ranges

where the x(t) position coordinate was near its maximum value. In one

tri.l, therefore, the errors associated with data points for which the

values of x(t) were near their maximum magnitude were given a

relatively large weight. The goal was to force the least squares curve

through these points. A second trial involved a two-step process.

Initially, an unweighted least squares procedure was completed. The

elements of the error vector (and a function of ; for some trials) were

used in step two as he diagonal entries of the weighting matrix. The
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sum of the squared errors (T) and the value of e did not

significantly decrease by using these various weighted least squares

approaches. In the continuing search to improve the curve fit, the

fourth method used was based on a piecewise fit that forced agreement

at the data points.

D. Piecewis: Cur-ve Fits

Early work using a least squares method clearly indicated that an

approximate (that is, the "best" approximate) curve fit is computed

based on specific criteria. When segments of about 90 days were used

for least squares curve fits, excellent results were obtained; this

directly led to the idea of using piecewise curve fit methods for the

data spanning a complete trajectory. Curve fitting using local cubic

polynomials computed in a "spline" algorithm was the final method

investigated.

Although tne antecedents of splines appeared in the technical

literature more than 4 decades ago, it is generally agreed that the

formal birth of splines was in the 1940s, and the development is

closely associated with Professor I. J. Schoenberg. 31]  The simplest

type of spline is a set of straight lines connecting consecutive data

points. Other types of splines might be nonlinear with rational

functions, exponentials, algebraic functions, or even some piecewise

combination of these functions used for a specific problem. The cubic

spline approximates the position of a flexible thin beam, or

draftsman's spline, passing through all the points of a given data set.

In this sense, it has been found that a particular type of cubic

polynomial spline nearly minimizes the strain energy over all function
(323

curves passing through the given data set. This was the reason

behind Schoenberg's choice of the word "spline." 
[32'33 1

A cubic polynomial between any two data points has four degrees of

freedom (four coefficients). So, for a cubic spline with m segments,

the total possible degrees of freedom would be 4m. Boundary conditions

for the spline segments can greatly simplify the solution. Position

matching at all m data points, slope continuity, curvature continuity,
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and end point slope or curvature boundary conditions result in a system

of equations with a tri-diagonal (m-2)x(m-2) coefficient matrix. The

resulting matrix equation can be speedily solved and stored as an array

of break points (intersections) and an array of associated polynomial
(32]

coefficients, both available for easy access.

A simple example can illustrate both the computation of the spline

coefficients and, in particular, the use of boundary conditions.

Suppose a set of 5 points is given:

(tltx(tl) 1 (tiox I )

(t2,x(t2)) = (t2 ,x2 )

(t 3x(t)) = (t 3x 3 )

(t4,x(t4)) = (t41x4 )

(t 5x(t5 (t5,× 5 )

It is assumed that these points are both the given set of five data

points and the points of intersection of four cubic polynomials. This

assumption is not in general necessary and is made here only for

simplicity. Each segment has a polynomial of the form

x (t) = a (t-t )3 + b (t-t )2 + c (t-t )+ d for i= i, 2, 3, 4. (2-21)

i I i ii'' "

The first and second derivatives with respect to time are then given by

x(t) = 3a (t-t )2 + 2 b I(t-t ) + c (2-22)

and
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x(t) = 6aI(t-t) + 2 b. (2-23)

For notational simplicity, if (t +1 - t ) = h and x(t ) = S, then for

segment i with endpoints (t I, xI) and (t+, x 1+)

x= aI(t-t) 3 + bI(t -t )2 + cI(t-t I) + dI

d d i , (2-24)

x = 3a (t -t ) 2 + 2b (t -t) + c

= c, (2-25)

x = 6a (t -t ) + 2b

= 2b, =S1 ' (2-26)

)3 )2

x = a (t t-t) + b (ti-t + c (tl-t) + d
11 1 1+1 1 1 1+1 1 1 1 A

=ah +b h1
2 +ch +dt (2-27)

= 3a t -t )2 + 2b (t t + cX1+1 = 3 1~t+1-t I1 1+1I I

3a h2 + 2b h + c, (2-28)
= i i I I

and
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x = 6a (t -t ) + 2 b

=6a h + 2b =S (2-29)i i ! 1.1"

Using equation (2-26),

b = S /2; (2-30)i i

using equations (2-26) and (2-29),

a = (S -S)/6h; (2-31)

finally, using equation (2-24),

d = x . (2-32)

i i

Then, placing these identities Into equation (2-27), the solution

c = (X +I  )/h - (2h S+h S )/6 (2-33)

is derived. Using the condition that the slopes from each side at all

the interior points (2, 3, and 4) must match and modifying equation

(2-28) for the i-i point,
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i 
= 1-1

3a (h2_ +2b h1  + c (2-34)= -I )  2 -1 h1-1 1-I

Expressions for a I_, b1-1 , and c _- can be readily obtained from

equations (2-31), (2-30) and (2-33), respectively. These expressions

can then be substituted into equation (2-34), and the resulting

expression can be equated to (2-33). An equation in the unknowns S

S , S 1 and in the given values x, x il, h I,, and h is then

obtained (after some algebra):

h S + 2(h +h)S + hSI

6[(x1 +1 -x Ihi- (x-I_1 )/h 1 (2-35)

For this specific example, equation (2-35) can be used at the three

interior points where cubic polynomials intersect to give,

for i=2,

iI S + 2(h +h 2) S2 + h2S3 = 6[(x 3-x 2)/h 2-(x 2-x )/h I = x2

for i=3,

h2S2 + 2(h 2+h 3 ) S3 + h3S4 = 6[(x 4-x 3)/h 3-(x 3-x 2)/h 2 = x3

and, for 1=4,

h3S 3 + 2(h 3+h 4) S4 + h4 S = 6[(x -x4)/h4-(x 4-x 3)/h = x4.
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Boundary conditions are used to find S and S for this 5-point1 5

problem. These conditions could be S = S = 0; this choice results inI 5

what is called a "natural" spline Alternatively, the "not-a-knot" end

conditions are present if the end point derivatives are not specified

and the required polynomial pieces are reduced from n-i to n-3. For

the following example, the end point second derivatives are chosen such

that S = S and S = S . The final result is an (n-2) x (n-2) or, in1 2 5 4

this case, a 3 x 3 tri-diagonal system:

3h+ 2h h 0 S x
1 2 2 2 2

h 2h +2h h S = x (2-36)
2 2 3 3 3 3

0 h 2h +3h S x

Equation (2-36) can be written in more compact form as

Solving for the unknowns S2' S3P and S4 then allows solution of

equations (2-31) through (2-33) for the coefficients a,, bi, ci, and di

for each of the polynomial segments. The cubic spline, with curvature

continuity, can then be stored as an array of break points

(intersections) and an array of associated polynomial coefficients for

easy access and interpolation.

The boundary conditions at points 1 and n could have been altered

to stipulate the s.opes at these endpoints. When these slopes are

known due to some prior knowledge of the data set, the resulting cubic

spline with curvature continuity and with slope boundary conditions is

called a "complete" cubic spline. It has been determined that a

complet s ubic spline interpolant approximately minimizes the strain

energy over all function curves passing through the given data set.
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Following a review of cubic spline interpolants and the use of

some of these splines to fit a representative data set, a method

devised by Hiroshi Akima ( deserves special mention. The Akima

spline minimizes extraneous points of inflection and provides a smooth

curve that closely resembles one that could be drawn manually through

the data. The Akima spline interpolation routine produced excellent

results for the state coordinates associated with a Lissajous

trajectory. It was exact through all modeled points, consistent with

its formulation.

The most unique characteristic of the Akima spline is that it

combats "wiggles" in the interpolant curve by minimizing extraneous

points of inflection. In this way, the Akima spline provides a smooth

curve that closely resembles one that would be drawn manually through

the data set. Several mathematical methods for interpolating a single

valued function result in a curve that is very different than the

smooth curve that would be drawn manually. Methods that place

polynomial or another type of curve through a data set, and even some

splines, generally produce unnatural points of inflection. [341 It can

be shown that there is a unique polynomial of degree n through n+1

points or a unique trigonometric polynomial with n terms through n-i
[35]

points. Figures 2-3, 2-4, and 2-5 illustrate the use of a ten

degree polynomial, 11-term sinusoidal curves, and spline

approximations, respectively, passing through the 11 points listed in

Table 2-2. 34 1 Extra "wiggles" (points of inflection) are obvious in

Figures 2-3 and 2-4. The spline approximations in Figure 2-5 are not

Akima splines, and they do exhibit an additional point of inflection

near t=6.

TABLE 2-2. LIST OF POINTS USED IN THE COMPARISONS OF METHODS

t 1 0 1 2 3 4 5 6 71 8 9 10

x(0110 10 10 10 10 10 10.5 15 50 60 85
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Using a 10-Degree Polynomial Fit
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Figure 2-3. Using a 10O-Degree Polynomial Curve Fit.
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Using an 11 -Term Sine Series Fit
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Using an 1 1-Term Cosine Series Fit
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Figure 2-4. Using a Sinusoidal Fit.
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Using a Cubic Spline Curve Fit with "Not-A-Knot" End Conditions
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Using a Cubic Spline with "Natural" End Conditions100...
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Figure 2-5. Using a Cubic Spline Curve Fit.
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The Akima spline relies on locally determined slopes using

geometrical relationships at each junction point. A spline in general

removes the global dependence of a polynomial on some remote local

properties: if the function to be approximated by a polynomial is

badly behaved anywhere in the interval of approximation, then the

approximation is poor everywhere. [331 The Akima spline goes one step

further, beyond removing global dependence, by also calculating local

slopes from the data set and matching these at each junction point.

The method uses five points P 1-2' P 1 ' P I P 1+, P 123selected from

the data set to calculate the slope at point P . Boundaryi

conditions are provided by estimating two more points on each end of

the data set and then calculating the slopes at the end points. For

every five points, the slopes of the four line segments P P1-2 i-1

P -P1 PPi+i, and P1+1P1+2 are denoted by M1, M2, M 3 and M4,

respectively. The geometrical relationships used by Akima lead to an

expression of the slope at point P (denoted as t ):[34]
i 1

((IM 4-M 3 )M2 + (IM2-M 1 )M3 )I (IM4-M31 + 1M2-M11)

When the denominator of t is zero, this slope at point P is given by! I

t = (1/2)(M + M
12 3

Thus, position and slope are specified at each data point, and between

any two data points, four conditions are present. A third-order

polynomial can then be uniquely determined.

The Akima algorithm and several other spline interpolation

routines produced excellent results for the coordinates of a libration

point Lissajous trajectory and required very little computational

memory. While the AkIma spline in general produces a curve fit with a

minimal number of points of inflection, the reference trajectories used

in this effort are relatively easy to curve fit with a either a
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"natural" or "not-a-knot" cubic spline. Routines available in

386-Matlab 321 are used primarily in this research effort.

Several differing spline routines generated excellent curve fits.

The computation incorporates forced agreement at all modeled data

points; however, analysis of the curve fit between data points is then

necessary. That is, it would be interesting to question how accurately

the cubic spline models the actual orbit between data points. A

typical numerical data set for a 800-day Lissajous trajectory was

selected to evaluate the shape-preserving nature of the spline. Every

other point of the data set was removed and stored for later

comparison. An Akima spline was then computed through the remaining

points. This spline was used to predict the locations of the points

that had been removed, and the spline prediction was compared to the

actual values. The results showed errors, when using an Akima cubic

spline, of less than one kilometer for the interior spline points.

Similar tests using other cubic spline routines also showed errors of

consistently less than one kilometer; the results are summarized in

Table 2-3 and Figure 2-6 , In most cases, the difference between the

spline-computed positions and the positions cf the removed points were

less than .5 kilometers. The difference in accuracy delivered by the

Akima or a more general cubic spline is much better (in meters) if the

corresponding numerical data is available for time steps of

approximately 2 days or less.

Table 2-3. Curve Fit Accuracy Using Cubic Splines
for the x(t) Coordinate of a Lissajous Path.

Orbit Duration 802.9063 days

Average integration time step 2.8400 days

Average change in x(t) during the time step 4255.0000 km

Minimum x(t) coordinate value 388.2521 km

Maximum x(t) coordinate value 56078.0000 km

Maximum error at unmodeled points using natural spline .6182 km

Maximum error at unmodeled points using not-a-knot spline .6181 km

Maximum error at modeled points using natural spline 0 km

Maximum error at modeled points using not-a-knot spline 0 km
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Using a Cubic Spline with "Natural" End Conditions
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Using a Cubic Spline with "Natural" End Conditions
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Figure 2-6. Histograms of Errors Caused by Curve Fitling
a Lissajous Path Using Cubic Splines when
Every Other Point is Unmodeled.
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The cubic spline has proven to be a useful and accurat,

interpolating polynomial for the coordinates of a [.ssajous Lrajectoy

about the interior libration point. Fourier series and least

squares approaches using trigonometric polynomials could not match its

accuracy; computation and storage do not seem to present a problem

when cubic splines are used to represent the nominal trajectory.

Cubic splines, including the Akima spline, were used in the

subsequent work for the computation of the numerical entries in the

Jacobian matrix as it was evaluated along the nominal path, and for the

calculation of residuals relative to the reference trajectory. When

range and range-rate measurements are simulated, the nonlinear

measurement equations are commonly linearized about the nominal path.

The cubic spline can then also be used to compute the time-varying

entries in the resulting measurement matrix. The Akima cubic spline

software is available in the International Mathematical and Statistical

Libraries (IMSL) by using the routines CSAKM (to compute the spline)

and CSVAL (to evaluate the spline at a specified abscissa value). A

useful cubic spline program is also available on 386-Matlab [321 by

using the SPLINE (computation) and PPVAL (evaluation) routines. The

routines CSAPN and CSAPI can also be used in Matlab to construct

natural and not-a-knot cubic splines, respectively. Spline

representations can now be incorporated in both the error analysis and

station-keeping studies in future research.
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CONCLUSION

The restricted three-body problem is an important and interesting

area of research. The Sun-Earth+Moon ER3BP, in particular, is

currently an area of vital research attention. The use of highly

accurate, numerically integrated nominal trajectories, coupled with the

need of a continuous representation of the path, necessitates the

investigation of curve fit methods, Other researchers have used

approximate Fourier series representations to curve fit the numerically

integrated libration point orbits. The use of such an approximate

curve near an accurately determined, numerically integrated path seems,

in part, to be wasted numerical integration effort. Other researchers

working on European Space Agency missions, have used tabular look-up

methods (linear interpolation) as a curve fit method. This

approximation ignores the curvature of the data, regardless of the

duration of the time steps used in the numerical integration. The

curve fitting using cubic splines exactly models every data point from

the numerical integration routine, accurately models the curvature

between the data points, and Is computationally efficient. Simulations

used to compute the state transition matrix and linearized measurement

equations and to calculate expected tracking errors and the cost of

maintaining the spacecraft near the unstable orbits can now also

incorporate cubic spline curve fits. This , in turn, will improve the

accuracy of further studies conducted in relation to future spacecraft

missions.
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